
Mobile Application
Programming
View Controllers

Containers & Content Container View

Content View

Legend

View Property

Reference
Delegate

View Controller

Window

Root View

Collection ViewHeader View Footer View

TitleAdd Button TitleItemItem Item Refresh

Content Label Detail LabelIcon

TextImage Text

View Controller

Application

Controller

View Model

User Action Notify

Update Update

Model View Controller (MVC)Application

The View
Built how we’ve been building them since the
beginning of class

Concerned mainly with presentation of data and
receiving input from the user

Data is generally passed to views through accessor
methods to simple data types

Booleans, Integers, Floating Point Numbers, Strings

User input events are sent to the controller through the
view’s delegate

View
Controller

View Model

View

Why Separate Views?

The Model
Source of data for the application

Contains all or nearly all of the program’s state

Should be thought of as persistent, that is, it stays the
same over separate runs of the program

Could be specifics of a running simulation, network and
caching code for interfacing with a server, interface into
a database running on the phone itself, or a simple
object that saves the state of the app to file

Model
Controller

View Model

Why Separate Models?

Model

The Controller

Acts as an adapter between model and view

Keeps the model in sync with changes in the view (user
interaction), and the view in sync with changes to the
model (network access, sensor changes, etc.)

Is the least portable part of the program

Controller
Controller

View Model

Why Link with Controllers?

Controller

Why Link with Controllers?

Controller

View Model

User Action Notify

Update Update

Why Link with Controllers?

Controller

View Model

User Action Notify

Update Update

Controller

View Model

User Action Notify

Update Update

Why Link with Controllers?

Controller

View Model

User Action Notify

Update Update

Notification

How do these happen?

Controller

View Model

User Action Notify

Update Update

Notification

Target:Action and Delegates!How do these happen?

View Controllers
Act as controllers in the MVC object relationship

They are not the only kind of controllers in an app

Typically occupy the location just above views in an
application’s object hierarchy

Manage a view hierarchy by way of a single view

Responds to view events using the target-action
mechanism and delegate relationships

Effect changes in model objects either directly or by
communicating with other controller objects

UIViewView Controller

UILabel

UIButton

View Controllers
UIViewView Controller

UILabel

UIButton

Controller

View Model

User Action Notify

Update Update

View Controller
Domain

View

Main Controller
App Delegate

having a Split View Controller
attached to a window

Surface View
Controller

List View
Controller

Surface View UITableViewShape Collection

Has
Weak Reference

Delegate

Controller

Model

View Hierarchy Management

View Controller

View

Title
Label

Detail
Text View

Buy
ButtonIcon

view property

subviews property

1st view
property
access

loadView()
[sets view]

viewDidLoad()
[customize view]

View Appearance Events

Rotation Support
 override var supportedInterfaceOrientations: UIInterfaceOrientationMask
 {
 return [UIInterfaceOrientationMask.Portrait,
 UIInterfaceOrientationMask.LandscapeLeft,
 UIInterfaceOrientationMask.LandscapeRight]
 }

Also See
UITraitCollection

View Controllers
UIViewView Controller

UILabel

UIButton

Usage
Control one screen-full of data for the user

Switching Screens
Do NOT change the view property of the current view
controller to switch screens! Instead, present another

view controller’s view using a presentation method

Simple Presentation

 presentViewController(_, animated:, completion:)
 dismissViewControllerAnimated(_, completion:)

Navigation Controllers

Navigation Controllers
A navigation controller is a great
starting point for many applications

Tapping an element in a custom view
or a row in a table view pushes a
new view controller onto the
navigation controller’s stack

This involves creating a new view
controller for each unique screen of
views. That is, another view
controller .swift file for each novel
screen

Navigation Controllers

 // Somewhere executed before the user can touch the table view:
 tableView.delegate = self

 func tableView(_ tableView: UITableView, didSelectRowAtIndexPath indexPath: NSIndexPath)
 {
 // Obtain row data item
 let item: String = itemForRowAtIndexPath(indexPath)

 // Open detail view controller for item
 var detailViewController: DetailViewController = DetailViewController()
 detailViewController.label.text = item
 navigationController?.pushViewController(detailViewController, animated: true)
 }

Navigation Controllers

For example, a view controller containing a table view
could create another view controller containing a detail
view and push it onto the navigation controller’s stack

Navigation Item

leftBarButtonItem(s)

UIBarButtonItem

title rightBarButtonItem(s)
See leftItemsSupplimentBackButton

Tab Bar Controllers

Tab Bar Items

image

UITabBarItem

title badgeValue

Normal and Selected images are
built from the input image

Uses the alpha component of a
pixel to build the image

Ignores the color components of
a pixel entirely!

Tab Bar Item Icons

http://glyphish.com/

Tab & Navigation Controllers

Tab Bar
Controller’s

 View

Navigation
Controller’s

 View

Tab Bar
Controller

Navigation
Controller 1

Content
View Controller

Navigation
Controller 2

Content
View Controller

Split-View Controllers

Split-View Controller

Split-View Controller
Master Navigation Controller
Detail Navigation Controller

Split-View Controller
Master Navigation Controller
Detail Navigation Controller
Master View Controller
Detail View Controller

Custom Container View
Controllers

 func displayContentController(content: UIViewController)
 {
 addChildViewController(content) // Signal start of transition, calls willMoveToParentViewController
 content.view.frame = someRectangle // Set the frame of the content view controller's view before adding
 view.addSubview(content.view) // Add the content view controller's view to the hierarchy
 content.didMoveToParentViewController(self) // Signal that the transition has completed
 }

 func removeContentController(content: UIViewController)
 {
 content.willMoveToParentViewController(nil) // Signal start of remove transition
 content.view.removeFromSuperview() // Remove view controller's view from hierarchy
 content.removeFromParentViewController() // Signal end of remove transition
 }

Web Views

